On Bounds For The Zeros of Univariate Polynomials
نویسندگان
چکیده
Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated. Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal. Keywords—complex polynomials, zeros, inequalities
منابع مشابه
On Bounds For The Zeros of Univariate Polynomial
Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated. Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds fo...
متن کاملOn the Location of Zeros of Complex Polynomials
This paper proves bounds for the zeros of complex valued polynomials. The assertions stated in this work have been specialized in the area of the location of zeros for complex polynomials in terms of two foci: (i) finding bounds for complex valued polynomials with special conditions for the coefficients and (ii) locating zeros of complex valued polynomials without special conditions for the coe...
متن کاملComputing sharp and scalable bounds on errors in approximate zeros of univariate polynomials
There are several numerical methods for computing approximate zeros of a given univariate polynomial. In this paper, we develop a simple and novel method for determining sharp upper bounds on errors in approximate zeros of a given polynomial using Rouche's theorem from complex analysis. We compute the error bounds using non-linear optimization. Our bounds are scalable in the sense that we compu...
متن کاملThe Quality of Zero Bounds for Complex Polynomials
In this paper, we evaluate the quality of zero bounds on the moduli of univariate complex polynomials. We select classical and recently developed bounds and evaluate their quality by using several sets of complex polynomials. As the quality of priori bounds has not been investigated thoroughly, our results can be useful to find optimal bounds to locate the zeros of complex polynomials.
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کامل